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We analyze the constructive interference of input signals in nonlinear, discrete, two-dimensional media. The
media consist of inductor-capacitor lattices with saturating, voltage-dependent capacitors. We find that nonlin-
earity significantly boosts the ability of such media to generate large-amplitude output signals from small-
amplitude inputs. To understand this boosting, we develop a general perturbative method suitable for finding
the steady-state solution of a damped N�N nonlinear lattice that is driven at a single frequency. We verify our
theory using extensive numerical simulations.
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I. INTRODUCTION

Consider a square, two-dimensional lattice of inductors
and capacitors as shown in Fig. 1. Suppose that a sinusoidal
voltage V of amplitude A is applied along the left and bottom
edges. The boundary forcing produces two incident waves of
equal amplitude A that collide at a right angle and produce an
outgoing wave with amplitude AR. If the capacitors are volt-
age independent, the lattice dynamics are linear. Assuming
the inputs are all in phase and that they all have equal am-
plitude A, we find at a fixed time T�0 that the peak output
voltage is equal to mA for some positive number m that does
not depend on A. This is the meaning of linearity: if we
double the amplitudes of all the inputs, we expect the outputs
to also double in amplitude.

If, however, the capacitors are voltage dependent, the lat-
tice dynamics are nonlinear. For in-phase, equal-amplitude
inputs, the peak output amplitude AR at a fixed time T�0
will depend nonlinearly on the input amplitude A. What we
show in this paper is that nonlinearity causes a significant
boost in the peak output. For a specific choice of capacitance
function C�V�, we find that the nonlinear output AR can be
several times the linear output mA. It turns out that AR is
limited only by the saturation voltage of the capacitors, the
size of the lattice, and the final time T.

We call this phenomenon nonlinear constructive interfer-
ence. To analyze this interference, we break the overall prob-
lem into a sequence of smaller problems. The dynamics of
the smallest 1�1 block is governed by a single damped,
driven, nonlinear oscillator equation. Given a specific capaci-
tance function C�V�, the nonlinear oscillator equation may be
analyzed perturbatively, producing analytical approximations
for the output of each stage. We find that nonlinearity boosts
the amplitude of the output signal by increasing its frequency
content. We find that in spite of approximations made along
the way, our perturbative results for 1�1 and 2�2 lattices
are in detailed quantitative agreement with numerical results.

We generalize the perturbative method to the case of an N
�N lattice with N arbitrary, and we claim that increasing the
size of the lattice strengthens the higher harmonics that are
induced by single-frequency boundary forcing. Our expecta-
tion is that regardless of the amplitudes of the input signals,
we can find a sufficiently large lattice where the peak output
amplitude is bounded only by capacitor saturation.

In studying this problem, we are motivated by both appli-
cations and theoretical concerns. Prior work on linear,
two-dimensional inductor-capacitor lattices �1–3� has dem-
onstrated their utility in analog applications, including a
power amplifier and a Fourier transform device. These
two-dimensional �2D� lattices can be fabricated on silicon
using standard complementary metal-oxide–semiconductor
�CMOS� processes. Compared with other silicon-based solu-
tions, the lattice approach features a high cutoff frequency,
high throughput, and low latency. By explaining how nonlin-
ear 2D LC lattices can nonlinearly combine the amplitudes
of input signals, we take a first step toward actually using
such lattices for on-chip microwave signal generation and
processing.

Spatially discrete systems similar to the one investigated
in this paper have been of recent interest to theorists as well.
For 2D nonlinear mass-spring lattices of Fermi-Pasta-Ulam
�FPU� type, several authors �4,5� have proven the existence
of discrete solitary waves. The link between FPU and
inductor-capacitor lattices has been exploited �6,7� to show
the existence of discrete breathers for both rectangular and
hexagonal versions of both types of lattices. Aside from
these types of systems, there has been a tremendous amount
of work on 2D discrete nonlinear Schrödinger �DNLS� sys-
tems, which we do not attempt to survey here.
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†ehsan@ece.cornell.edu FIG. 1. Two-dimensional nonlinear transmission lattice.
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Most of the literature on spatially discrete nonlinear
waves does not deal with the effects of forcing and dissipa-
tion. Notable exceptions include the dynamics of arrays of
Josephson junctions �discrete sine-Gordon lattices� �8–12� as
well as discrete Klein-Gordon and Frenkel-Kontorova lat-
tices �13–16�, where damping and driving have been exam-
ined extensively. These papers focus on mathematically in-
teresting properties such as chaos, synchronization, and the
existence and stability of coherent structures such as solitons,
kinks, and breathers. To our knowledge, none of these prior
works examines nonlinear constructive interference in a spa-
tially discrete system.

II. PRELIMINARY NUMERICAL EXPERIMENT

To give the reader a concrete idea of what we mean by
nonlinear interference, we first describe a numerical solution
of Kirchhoff’s laws on the lattice. We use the node and edge
numbering as given in Fig. 2. Let V denote voltage, and let
Ih,v denote, respectively, horizontal and vertical current. All
three of these quantities are N�N matrices. Then Kirch-
hoff’s laws are

d

dt
�Qi,j� = Ii,j−1

h − Ii,j
h + Ii,j

v − Ii−1,j
v , 1 � i, j � N , �1a�

L
d

dt
Ii,j
v = Vi+1,j − Vi,j, 1 � i, j � N , �1b�

L
d

dt
Ii,j

h = Vi,j − Vi,j+1, 1 � i � N, 0 � j � �N − 1� .

�1c�

Here the inductance L and capacitance function C�V� are
taken to be uniform throughout the lattice. We use Qi,j
=Q�Vi,j� to denote the charge stored in the nonlinear capaci-
tor that connects node �i , j� to ground. For nonlinear capaci-
tors, the charge is related to the capacitance by dQi,j
=C�Vi,j�dVi,j.

In �1a�, we use the convention I0,j
v = Ii,N

h =0 to handle the
i=1 and j=N cases. In �1�, when i=N we treat VN+1,j�t� as a
prescribed source and forcing function. Similarly, when j
=0 in �1c�, we treat Vi,0�t� as a prescribed source and forcing
function.

It is instructive to carry out the differentiation on the left-
hand side of �1a�. Let v�t� denote Vij�t�, let overdots denote
differentiation with respect to t, and let primes denote differ-
entiation with respect to v. Then we obtain d /dt�Qi,j�
=Q��v�v̇=C�v�v̇, so that �1a� may be rewritten as

d

dt
Vi,j =

Ii,j−1
h − Ii,j

h + Ii,j
v − Ii−1,j

v

C�Vij�
, 1 � i, j � N .

A physically meaningful capacitance function will be posi-
tive and will also saturate for sufficiently small and suffi-
ciently large voltages. With these qualifications in mind, we
choose the voltage-dependent capacitance function

C�v� = C0 ���
� −

4

5
�e���/�2b�+v� +

9

5
, v � −

�

2b
,

1 − 2bv , �v� �
�

2b
,

�4

5
− ��e���/�2b�−v� +

1

5
, v �

�

2b
.
	

�2�

Note that the parameter b is a measure of the voltage depen-
dence of this capacitance function. As b approaches zero, the
function C�v� approaches the constant function C�v�=C0.
Hence b controls the degree to which Eq. �1a� is nonlinear;
as b→0, the dynamics approaches that of a perfectly linear
medium. A plot of C�v� is shown in Fig. 3.

For the N�N lattice, we impose the boundary forcing

Vi,0�t� = VN+1,j�t� = A sin t, �N − 19� � i � N ,

1 � j � 20.

That is, we apply in-phase, equal-amplitude sinusoidal sig-
nals to each of the last 20 nodes on the left side of the lattice,
as well as to each of the first 20 nodes on the bottom edge of
the lattice. Other boundary nodes are set to zero.

Sweeping through values of the input amplitude A, we
numerically solve system �1� with N=80. We take L=1 and
C�v� given by �2� with C0=1, b=0.25, �=0.5, and �=1.66.
We stop each simulation at T=8� and record the peak output
amplitude AR for 0� t�T. By peak output amplitude, we
mean

FIG. 2. Node and edge numbering for Kirchhoff’s laws
�1a�–�1c�.
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FIG. 3. Voltage-dependent capacitance C�v� as defined in �2�,
with C0=1, b=0.25, �=0.5, and �=1.66.
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AR = max
1�i, j�N

0�t�T

Vi,j�t� . �3�

Note that the stopping time T is sufficiently small so that the
signals have not reached very far into the lattice; in particu-
lar, the voltage and current at the right and top boundaries
are still zero. We carry out the same test on a linear �b=0�
lattice with L=1 and C�V�=C0=1. The results are plotted in
Fig. 4.

What these results show is that the voltage dependence of
the capacitor significantly boosts the peak output voltage. As
one might expect, the larger the input amplitude A, the
greater the difference between the peak outputs of the non-
linear and linear systems. The results also show that there is
a limit to the boosting effect of nonlinearity: for this particu-
lar numerical experiment, the ratio AR /A reaches a maximum
of approximately 10.

In Fig. 4�b�, we have also plotted the peak output ampli-
tude AR� at time T /2=4�; this quantity is defined just as in
�3�, but with T replaced by T /2 on the right-hand side. Fig-
ure 4�b� shows that if we do not run the simulation long

enough, then for very small input amplitudes—say, 0�A
�0.1—there is a possibility that nonlinearity causes a small
decrease in the boost ratio AR /A; see the portion of the
dashed curve that lies below the straight linear boost line.
Because this effect disappears if we take the peak amplitude
at T=8� instead of T=4�, it must be a transient effect; in the
present work, we are concerned with steady-state nonlinear
interference and transient effects will not be considered.

The natural question to ask at this stage is, why and how
do voltage-dependent capacitors boost the output amplitude?
An ideal answer to this question would involve the full so-
lution of Kirchhoff’s laws subject to the driving and damping
described above. For an 80�80 lattice, there are 6400 un-
known voltages and 12 800 unknown currents. The ideal an-
swer would involve solving a nonautonomous, nonlinear dy-
namical system in R19200, a rather daunting task. A natural
approach would be to pass to a continuum limit and derive a
single partial differential equation �an infinite-dimensional
system� that approximates the dynamics of the 80�80 lat-
tice. For reasons described at the end of this paper, that is not
the strategy we take here.

Our approach will be to deal directly with the N�N spa-
tially discrete system. We caution the reader that we do not at
this time have an analytical model that generates the curves
in Fig. 4. Our goal is instead to explain how such curves are
possible—i.e., how it is possible that introducing voltage-
dependent capacitors can dramatically boost the observed
lattice voltages. Along the way, we present an analytical
method for determining the steady-state output of a nonlinear
lattice of arbitrary size. To accomplish this, we take a careful
look at 1�1 and 2�2 lattices.

III. PERTURBATIVE ANALYSIS

We theorize that the macroscopic dynamics of the whole
lattice can be understood by appropriately scaling the micro-
scopic dynamics of a very small part of the lattice. Our strat-
egy will be to obtain detailed information about the dynam-
ics of the bottom-left corner of the lattice and then use this
information to infer properties of the 80�80 lattice. To keep
the algebra simple, we assume that the voltages in our prob-
lem are sufficiently close to zero so that C�v�=C0�1−2bv�.
At the voltage v, the charge stored in the capacitor is given
by Q�v�=
C�v�dv=C0�v−bv2�.

A. Steady-state solution for the 1Ã1 lattice

We examine the bottom-left corner of the lattice from Fig.
1. By treating the rest of the lattice as a resistive load, we
obtain the circuit diagrammed in Fig. 5. In this model, the
lower-left corner interacts with the rest of the lattice through
the load R. Kirchhoff’s laws of voltage and current for this
circuit are

V1 − VR = L
d

dt
I1, �4a�

V2 − VR = L
d

dt
I2, �4b�
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FIG. 4. Output amplitude AR and boost ratio AR /A as a function
of input amplitude A for an 80�80 lattice. The solid straight lines
show results for a linear lattice with constant capacitance C0=1.
The curved lines show results for a nonlinear lattice with voltage-
dependent capacitance C�v� as shown in Fig. 3. The solid curved
line shows the peak output amplitude AR at T=8�, while the dashed
curved line shows the peak output amplitude AR� at T /2=4�. The
results show that nonlinearity significantly boosts the peak output
voltage, but that the boost ratio is bounded.
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I1 + I2 −
VR

R
= C0

d

dt
�VR − bVR

2� . �4c�

Here V1 and V2 are the inputs from the boundary and VR is
the output. Note that if V1�t�=V2�t�, then �4a� and �4b� imply
that I1�t�= I2�t�. In this case, we denote I�t�= Ij�t�. Differen-
tiating �4c�, we obtain

LC0
d2

dt2 �VR − bVR
2� +

L

R

d

dt
VR + 2VR = 2V . �5�

This is a damped, driven nonlinear oscillator equation. We
introduce the nondimensionalized time variable 	= t /�LC0
and the change of variable VR�t�=W�	�. Let overdots denote
differentiation with respect to 	. With these changes, �5� be-
comes

Ẅ − 2bẆ2 − 2bWẄ + KẆ + 2W = 2S , �6�

with K=�L /C0 /R as a nondimensional parameter and
S�	� : =V��LC0	�.

We are interested in the case where at 	=0, the voltage

and current in the circuit are zero—i.e., W�0�=0 and Ẇ�0�
=0. Then, at 	=0, a sinusoidal input voltage is switched on:

S�	� = A sin�
	�H�	� , �7�

where 
=��LC0 is a nondimensionalized frequency and
H�	� is the Heaviside unit step function,

H�	� = �1, 	 � 0,

0, 	 � 0.



Since �6� is nonlinear, we cannot claim that the solution W
for this choice of S will be a simple superposition of transient
and steady-state pieces. Still, we expect that W�	� gradually
decays and deforms from a transient solution �near 	=0� into
a steady-state solution �as 	→ +��. Let us make the simpli-
fying assumption that W reaches steady state very quickly.
This assumption will later be justified using numerics. For
now, we focus on obtaining a steady-state solution to �6�. To
do this, we pretend as if the input voltage was switched on at
	=−�. That is, we take S�	� to be

S�	� = A sin�
	� . �8�

We now proceed to perturbatively solve �6� with S given by
�8�.

When b=0 in �6�, W satisfies a damped, driven harmonic

oscillator equation. The driving is given by V̂, and the damp-
ing coefficient is K. Since we know how to solve the b=0

equation, we expand the solution W�	� in a series in b:

W�	� = W0�	� + bW1�	� + b2W2�	� + ¯ . �9�

The true nonlinear solution should be expressed as W�T�
where T=	�1+b
1+b2
2+¯�, but for our purposes, it will
turn out that ignoring this frequency shift yields a perfectly
useable approximation. Inserting �9� into �6�, we find that the
O�b0� equation is

Ẅ0 + KẆ0 + 2W0 = 2A sin�
	� . �10�

As mentioned above, we seek the steady-state solution of
this equation. This can be done in an elegant way by taking
the Fourier transform of both sides. In what follows, � is the
frequency variable that is Fourier conjugate to time 	:

�− �2 + i�K + 2�Ŵ0��� =
A

i
��� − 
� −

A

i
��� + 
� .

This yields

Ŵ0��� =
A

− i�2 − K� + 2i
��� − 
� +

A

i�2 + K� − 2i
��� + 
� .

Now taking the inverse Fourier transform of both sides gives

W0�	� = Bei
	 + B�e−i
	, �11�

B =
A

− i
2 − K
 + 2i
. �12�

Using �9�, we may write the O�b1� equation from �6�:

Ẅ1 + KẆ1 + 2W1 = 2Ẇ0
2 + 2W0Ẅ0 = �− 2B2
2e2i
	� + c.c.,

�13�

where we used �11� to evaluate the right-hand side of �13�.
Examining �13�, we find that it is once again a damped,
driven harmonic oscillator equation. We ignore the transient
part of the solution. We may write the steady-state solution
as

W1�	� = Ce2i
	 + c.c., �14�

C =
4
2B2

4
2 − 2iK
 − 2
. �15�

Finally, we use �9� to write the O�b2� equation from �6�:

Ẅ2 + KẆ2 + 2W2 = 4Ẇ0Ẇ1 + 2W1Ẅ0 + 2W0Ẅ1

= �− 18BC
2e3i
	 − 2B�C
2ei
	� + c.c.

�16�

Note that we used �11� and �14� to evaluate the right-hand
side of �16�. Again, ignoring transients, we write the steady-
state solution as

W2�	� = D1e3i
	 + D2ei
	 + c.c., �17�

FIG. 5. The bottom-left corner of the nonlinear 2D LC lattice
shown in Fig. 1, with the rest of the lattice treated as a resistive load
R.
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D1 =
− 18BC
2

− 9
2 + 3iK
 + 2
, D2 =

− 2B�C
2

− 
2 + iK
 + 2
. �18�

Putting �11�, �14�, and �17� together, one arrives at the fol-
lowing O�b2� approximation to the steady-state solution of
�6�:

W�	� = Bei
	 + bCe2i
	 + b2D1e3i
	 + b2D2ei
	 + c.c.

�19�

The coefficients B, C, D1, and D2 depend on A, 
, and K, but
they do not depend on b.

B. Numerics for the 1Ã1 lattice

Earlier we claimed that the true solution of �4� reaches
steady state quickly. To justify this claim, we numerically
solve �4� with the capacitance function C�v� given by �2� and
forcing function V1�t�=V2�t�=A sin t. We take L=1, C0=1,
b=0.25, R=1, and A=0.4. With this choice of constants, we
see that 	= t, 
=1, and K=1. Let us denote the numerical
solution for the output voltage by Wnum�	�. �This voltage is
labeled as VR in our earlier Fig. 5.�

We plot Wnum�	� as the solid black curve in Fig. 6. It is
clear that Wnum�	� reaches steady state very quickly; for 	
�2�, after just one period of input forcing, there is no dis-
cernable transient behavior.

Also in Fig. 6 we plot using a dash-dotted curve the per-
turbative steady-state solution W�	� given by �19�. From 	
=2� until 	=8�, both the solid and dash-dotted curves agree
extremely well.

Finally, note that the choice of C�v�=C0�1−2bv� implicit
in �6� is equivalent to C�v� defined earlier by �2� and Fig. 3,
as long as the voltage v satisfies �v��� / �2b�=1.0. As shown
in Fig. 6, this condition is satisfied for both the numerical
and perturbative solutions.

C. Interpretation

It is clear from our derivation of �19� that going from the
O�bk� approximation to the O�bk+1� approximation results in

the addition of higher harmonics to the solution. Driving the
nonlinear oscillator Eq. �6� at a single frequency as in �8�
yields a solution with frequency content consisting of mul-
tiples of the original frequency. Note also that setting b=0 in
�19� removes all of the higher harmonics; this shows that the
steady-state response for the linear, constant capacitor sys-
tem is 2�B� where B is defined by �12�.

We claim that for b�0, the higher harmonics add con-
structively to the amplitude. To show that this is the case, we
use �19� to plot the maximum output amplitude AR as a func-
tion of the input amplitude A for the case where 
=1, K
=1, and b=0.25. Here AR is defined as

AR = max
	��0,2��

�W�	�� ,

and this is shown as the dash-dotted black curve in Fig. 7.
We also generate numerical solutions of the output

voltage—denoted, as before, by Wnum�	�—of the system
�4a�–�4c� with saturating capacitance �2� and forcing V1�t�
=V2�t�=A sin t for values of A in the range 0�A�0.4. We
run the simulation from 	=0 until 	=14� with the param-
eters 
=1, K=1, and b=0.25. We then compute the maxi-
mum output amplitude after the numerical solution has
reached steady state—i.e.,

AR
num = max

	��10�,14��
�Wnum�	�� .

This is shown as the solid black curve in Fig. 7. Note that the
solid black curve and dash-dotted black curve agree so
closely that they are right on top of one another. The only
difference between these two curves appears as A approaches
0.8, at which point there is a small error in the perturbative
approximation. Finally, we plot both versions of AR together
with the maximum amplitude that would have been observed
had we set b=0—i.e., if we had a linear system with constant

0 2π 4π 6π 8π 10π
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

τ

W
(τ

)

FIG. 6. The solid black curve is the numerical solution Wnum�	�
of �4� with saturating capacitance �2�. The dashed black curve is the
perturbative solution W�	� from �19�. Note that the numerical solu-
tion reaches steady state very quickly and also that both solutions
agree very well for 	�2�. Both solutions have the same param-
eters A=0.4, 
=1, K=1, and b=0.25.
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FIG. 7. There are three curves plotted here, all of which give
steady-state output amplitude AR as a function of input amplitude A
for the 1�1 lattice with 
=1 and K=1. The two upper curves
�indistinguishable except when A is close to 0.8� are for a nonlinear
lattice with b=0.25, while the lower line �in black dashes� is for a
linear lattice with b=0. The solid black and dash-dotted upper
curves were generated, respectively, by using numerical simulation
of �4� and the perturbative approximation �19�. Note that when A
=0.4, the nonlinear amplitude is 8% larger than the linear ampli-
tude; when A=0.8, the difference is 19%.
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capacitors. The maximum amplitude for the linear b=0 sys-
tem is given by the dashed black curve, which in Fig. 7 is
strictly below the b=0.25 curves.

In the middle of the graph, when A=0.4, we have that
AR=0.6108 and AR

num=0.6103. The linear response to this
input has amplitude 0.5657. When the input amplitude is A
=0.4, the higher harmonics in the nonlinear b=0.25 response
provide a total amplitude boost of 8% over the linear re-
sponse.

D. Frequency response

So far in our numerical simulations we have chosen L
=1, C0=1, and the input forcing V�t�=A sin 
t where 

=�LC0=1. At this stage, it is natural to ask what happens
when we vary the input frequency.

For the linear b=0 system, we know that the steady-state
response will be given by

AR�	� = Bei
	 + B�e−i
	,

with B defined by �12�. The amplitude of this signal is given
by

�B� = � A

− i
2 − K
 + 2i
� =

�A�
�4 + �− 4 + K2�
2 + 
4

.

�20�

A simple calculation shows that �B� is maximized when


r = ��2 −
K2

2
.

This frequency 
r is the resonant frequency for the linear
b=0 case of the oscillator Eq. �6�. For K=1, this corresponds
to 
r=�3 /2�1.2247. The natural question to ask is how
nonlinearity affects this resonant frequency. That is, how
does the amplitude of the perturbative approximation W�	�
given by �19� vary as a function of 
?

To answer this question, we plot both the linear b=0 am-
plitude �20� and the maximum nonlinear b=0.25 amplitude

AR = max
	��0,2��

�W�	��

as functions of 
. We set A=0.4 and K=1 for this test. The
results are shown in Fig. 8. The solid black and dash-dotted
curves are, respectively, the frequency response for the non-
linear and linear systems. Two things are clear from this plot.
First, the nonlinear response reaches a peak amplitude at a
frequency that is very close to the linear resonant frequency

r. Second, 
=1 is in the middle of an interval of frequen-
cies where the nonlinear response is significantly higher in
amplitude than the linear response. In other words,
nonlinearity-driven amplitude boosting is robust with respect
to changes in the driving frequency.

We expect that this robustness carries through to the case
of 2�2 and, indeed, N�N lattices. In what follows, we take

=1 and demonstrate that nonlinear constructive interfer-
ence does not depend on driving the system at the resonant
frequency 
r.

E. Steady-state solution for the 2Ã2 lattice

Next we examine the effect of an additional stage on the
amplitude boost. That is, we analyze the 2�2 bottom-left
subblock of the original lattice where, once again, the rest of
the lattice is treated as a resistive load R. The circuit is dia-
grammed in Fig. 9�a�. In the case of equal-amplitude, in-
phase inputs, symmetry allows us to replace this circuit by
the equivalent circuit diagrammed in Fig. 9�b�. We again
ignore capacitor saturation and use C�v�=C0�1−2bv� and
Q�v�=C0�v−bv2�. Then Kirchhoff’s laws for this circuit are

L

2

d

dt
I1 = V − V1,

L

2

d

dt
I2 = V1 − V2, �21a�

L

2

d

dt
I3 = V − V2,

L

2

d

dt
I4 = V2 − VR, �21b�

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

ω

m
ax

A
R

FIG. 8. Frequency response for the linear b=0 system �given by
the dash-dotted curve� and the nonlinear b=0.25 system �given by
the solid curve�. Both curves gives the maximum amplitude of the
output signal AR as a function of input frequency 
 in the case
where K=1 and A=0.4. Here AR is computed using the steady-state
perturbative approximation �19�.

(b)

(a)

FIG. 9. The 2�2 lower-left corner of the original lattice shown
in Fig. 1, with the rest of the lattice treated as a resistive load R.
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C0
d

dt
�V1 − bV1

2� = I1 − I2, �21c�

2C0
d

dt
�V2 − bV2

2� = I2 + I3 − I4, �21d�

C0
d

dt
�VR − bVR

2� = I4 −
VR

R
. �21e�

Differentiating �21c�–�21e� with respect to t and plugging in
�21a� and �21b�, we obtain the following system of three
coupled nonlinear oscillators:

C0
d2

dt2 �V1 − bV1
2� =

2

L
�V − 2V1 + V2� , �22a�

C0
d2

dt2 �V2 − bV2
2� =

1

L
�V + V1 − 3V2 + VR� , �22b�

C0
d2

dt2 �VR − bVR
2� =

2

L
�V2 − VR� −

1

R

d

dt
VR. �22c�

As in the 1�1 case, we use the nondimensionalized time 	
= t /�LC0 and the change of variables VR�t�=W�	� and Vj�t�
=Wj�	� for j=1,2. Let primes denote differentiation with
respect to 	; then, after changing variables and using the fact
that �x�	�−bx�	�2��=x�−2b�x��2−2bxx�, system �22� be-
comes

W1� + 4W1 − 2W2 = 2S + 2bW1W1� + 2b�W1��
2, �23a�

W2� + 3W2 − W1 − WR = S + 2bW2W2� + 2b�W2��
2,

�23b�

WR� + KWR� + 2WR − 2W2 = 2bWRWR� + 2b�WR��2, �23c�

where K=�L /C0 /R as a nondimensional parameter and
S�	� : =V��LC0	�. As in the 1�1 case, we may derive a per-
turbative steady-state solution to �23�. First we develop the
unknowns as series in b:

W1 = W1
�0� + bW1

�1� + b2W1
�2� + ¯ , �24a�

W2 = W2
�0� + bW2

�1� + b2W2
�2� + ¯ , �24b�

WR = WR
�0� + bWR

�1� + b2WR
�2� + ¯ . �24c�

We plug these expansions into �23�. As before, we concern
ourselves only with steady-state solutions for single-
frequency forcing, so we take

S�	� = A sin�
	� =
A

2i
ei
	 + c.c. �25�

�a� Obtaining W�0� for single-frequency forcing. With
S�	� given by �25�, we now explain how to solve for W�0�

= �W1
�0� ,W2

�0� ,WR
�0��T. Let M be the matrix

M��� = �− �2 + 4 − 2 0

− 1 − �2 + 3 − 1

0 − 2 − �2 + iK� + 2
� . �26�

Let Ŵ�k�= �Ŵ1
�k� ,Ŵ2

�k� ,ŴR
�k�� denote the Fourier transform of

W�k�, and let r̂�k� denote the vector obtained by taking the
Fourier transform of the O�bk� terms on the right-hand side
of �23� after we have plugged in the expansion �24� and the
function �25�. Then the Fourier transform of the O�b0� equa-
tion reads

MŴ�0� = r̂�0�. �27�

In this case, the O�b0� term on the right-hand side of �22� is

r�0� =�
A

i
ei
	 −

A

i
e−i
	

A

2i
ei
	 −

A

2i
e−i
	

0
� ,

so the Fourier transform �with � as the Fourier conjugate to
	� is

r̂�0� =�
A

i
��� − 
� −

A

i
��� + 
�

A

2i
��� − 
� −

A

2i
��� + 
�

0
� .

From �27� we may then derive

Ŵ�0� = M−1r̂�0� = M−1�
A

i

A

2i

0
���� − 
� − M−1�

A

i

A

2i

0
���� + 
� .

Now taking the inverse Fourier transform on both sides gives

W�0� = M�
�−1�
A

i

A

2i

0
�ei
	 + M�− 
�−1� −

A

i

−
A

2i

0
�e−i
	.

�28�

From �26�—i.e., from the definition of M—we know that

M�− 
� = M�
��.

Therefore, if we define the vector B by
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B = M�
�−1�
A

i

A

2i

0
� ,

then �28� becomes

W�0� = Bei
	 + c.c. �29�

We have successfully obtained W�0�. It is now possible to
iterate this procedure to determine W�1� and to keep iterating
until the approximation

�
k=0

N

bkW�k��	�

yields a sufficiently good approximation to the true steady-
state solution of �22�. With this in mind, we present the fol-
lowing algorithm for determining an approximation that is
correct to order bNW�N�:

�b� Algorithm 1. For each k from 1 to N, repeat the fol-
lowing steps. Assume that W�0� ,W�1� , . . . ,W�k−1� are already
known. We determine the O�bk� term W�k� as follows.

Step 1. Substitute W�0� , . . . ,W�k−1� into the right-hand side
of �22� and collect those terms with the coefficient bk. Call
these terms r�k�.

Note that, in general, one will have a set of real frequen-
cies �
1 ,
2 , . . . ,
P� and a set of complex vectors
�s1 ,s2 , . . . ,sP� such that

r�k� = �
j=1

P

�s je
i
j	 + s j

�e−i
j	� .

�Note that the integer P, the real frequencies �
 j� j=1
P , and the

complex vectors �s j� j=1
P will be different for each iteration of

this algorithm.�
Step 2. Compute the Fourier transform r̂�k�. In general,

this will be

r̂�k� = �
j=1

P

�s j��� − 
 j� + s j
���� + 
 j�� ,

where � is Fourier conjugate to 	.

Step 3. Now solve the linear system M���Ŵ�k�= r̂�k�—i.e.,
write

Ŵ�k� = M���−1r̂�k� = �
j=1

P

M���−1s j��� − 
 j�

+ M�− ��−1s j
���� + 
 j� .

Step 4. Finally, take the inverse Fourier transform of both
sides to obtain

W�k� = �
j=1

P

M�
 j�−1s je
i
j	 + M�− 
 j�−1s j

�e−i
j	.

Since M�−
 j�=M�
 j��, we see that the previous line can be
rewritten as

W�k��	� = �
j=1

P

M�
 j�−1s je
i
j	 + c.c.

We have implemented Algorithm 1 in Mathematica and used
it to generate an approximation to fourth order in b. Let us
denote the WR component of the Mathematica-generated ap-
proximation by WR

mm:

WR
mm = �

k=0

4

bkW�k��	� = BRei
	 + bCRe2i
	

+ b2�DR,1e3i
	 + DR,2ei
	� + b3�ER,1e4i
	 + ER,2e2i
	�

+ b4�FR,1e5i
	 + FR,2e3i
	 + FR,3ei
	� . �30�

Our Mathematica implementation does provide analytical
expressions for the coefficients BR, CR, DR,j, ER,j, and FR,j.
We omit these expressions for reasons of space.

F. Numerics for the 2Ã2 lattice

We again use numerical tests to justify the analysis done
above. First we numerically solve �21� with saturating ca-
pacitance C�v� given by �2� and input forcing V�t�=A sin t.
As before, we take L=1, C0=1, b=0.25, R=1, and A=0.3.
Once again this implies 	= t, 
=1, and K=1. We run the
simulation from 	=0 to 	=14�. Let us denote the numerical
solution for the voltage across the output resistor by WR

num�	�.
This function is plotted as the solid black curve in Fig. 10.
The dash-dotted curve is the perturbative steady-state solu-
tion WR

mm�	� given by �30�. It is clear that WR
num�	� reaches

steady-state very quickly; for 	�2�, after just one period of
input forcing, there is no discernable transient behavior, and
both the dash-dotted and solid curves agree extremely well.

G. Interpretation

Just as we found for the 1�1 lattice, Algorithm 1 shows
that going from the O�bk� approximation to the O�bk+1� ap-
proximation results in the addition of higher harmonics to the
output of the 2�2 lattice. The boundary excitation at fre-
quency 
, interacting with the nonlinearity of the medium,
kicks up output frequencies of 2
, 3
, 4
, etc. We claim
that these higher harmonics have larger amplitudes in the
2�2 case than they did in the 1�1 case.

To show that this is true, we again use a direct numerical
simulation of �21� and the perturbative approximation �30� to
plot the maximum output amplitude AR as a function of the
input amplitude A for the case where 
=1 and K=1. We
study the effect of two different nonlinearity values b=0.05
and b=0.25, which in Fig. 11 are shown in the left and right
panels, respectively. Using the perturbative approximation
�30�, define

AR = max
	��0,2��

�WR
mm�	�� .

The output AR is shown as the dash-dotted black curve in
both panels of Fig. 11.

We also generate numerical solutions WR
num�	� of the sys-

tem �21� with saturating capacitance C�v� given by �2� and
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input forcing V�t�=A sin t for values of A in the range 0
�A�0.8. We solve for WR

num�	� on the interval 0�	
�14� with the parameters 
=1, K=1, and either b=0.05
�left panel� or b=0.25 �right panel�. We then compute the
maximum output amplitude after the numerical solution has
reached steady state—i.e.,

AR
num = max

	��10�,14��
�WR

num�	�� .

This is shown as the solid black curve in both panels of Fig.
11. In the left panel, where b=0.05, the solid black curve and
dash-dotted black curve agree so closely that they are right
on top of one another. When we increase the nonlinearity to
b=0.25, as in the right panel, the two curves agree very
closely except in the range 0.6�A�0.8. In this range, as
shown by the numerical simulations �solid curve�, the output

voltage AR is sufficiently high that capacitor saturation has
become an issue. The perturbative solution �dash-dotted
curve� uses the nonsaturating C0�1−2bv� model. For b
=0.25, this model is invalid for v�2; this is why in Fig.
11�b�, when AR�2, the perturbative solution overestimates
the output voltage.

In both panels, we also plot �using a dashed line� the
maximum amplitude that would have been observed had we
set b=0—i.e., if we had a linear system with constant ca-
pacitors. As in the 1�1 case, we see from Fig. 11 that the
linear b=0 response lies strictly below the b�0 curves.

In the middle of the graph, when A=0.4, we have that
AR=1.1142 and AR

num=1.1024. The linear response to this
input has amplitude 0.8944. That is to say, for an input signal
with amplitude A=0.4, the higher harmonics in the nonlinear
b=0.25 response provide a total amplitude boost of roughly
23% over the linear response.

Increasing the size of the lattice increases the amplitude
of the higher harmonics, thereby strengthening the nonlinear

0 2π 4π 6π 8π 10π

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

τ

W
(τ

)

0 π/2 π 3π/2 2π

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

τ − 12 π

W
(τ

)

(b)

(a)

FIG. 10. The solid curve gives the numerical output voltage
WR

num�	� generated by solving �21� with saturating capacitance C�v�
given by �2� and input forcing V�t�=A sin t. The dashed curve is the
perturbative solution WR

mm�	� from �30�. The left panel shows both
solutions for 0�	�10�, and the right panel shows both solutions
for 12��	�14�. Note from the left panel that the numerical so-
lution reaches steady state very quickly and that both solutions be-
come indistinguishable as 	 increases from 2�. Both numerical and
perturbative solutions have the same parameters A=0.3, 
=1, K
=1, and b=0.25.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

A

A
R

0 0.2 0.4 0.6 0.8
0

0.7

1.4
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2.8
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(b)

(a)

FIG. 11. There are three curves plotted in both panels. The
lower dashed curve is the steady-state output amplitude for the b
=0 linear lattice. The solid �numerical� and dash-dotted �fourth-
order perturbative� upper curves give the steady-state nonlinear am-
plitudes for the two indicated values of b. Note that when b=0.25
and A=0.4, the nonlinear peak amplitude is roughly 23% higher
than the linear peak amplitude. We set K=1 and 
=1 for all runs.
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constructive interference and leading to a larger relative
boost over the linear response.

IV. GENERALIZATION TO NÃN LATTICES

A. Amplitude boost

We have enough information to begin to understand how
the voltage dependence of the capacitors in an 80�80 lattice
can cause a large increase in amplitude, as shown in Fig. 4.
In what follows, we assume that all lattice parameters are the
same as those used to produce Fig. 4. In particular, we as-
sume that b=0.25 and that the input forcing is applied to the
last 20 nodes on the left boundary and the first 20 nodes on
the bottom boundary. Our explanation of Fig. 4 is as follows.

�i� After 	=2�, the nonlinear 2�2 system has already
reached steady state. We extrapolate from this that a large
subblock would reach steady state at 	=8�, which is the
time at which the data in Fig. 4 were taken. Even if the
dynamics of the rest of the lattice has not yet reached steady
state, as long as the input amplitudes are not small, the tran-
sient dynamics does not display significant overshoot or un-
dershoot. The steady-state theory remains a useful guide.

�ii� Our analytical and numerical steady-state calculations
indicate that increasing the size of the lattice from 1�1 to
2�2 can increase the relative amplitude gain �over the linear
b=0 lattice� from 8% to 23%. From this result, we expect
that the output amplitude for a 20�20 nonlinear lattice can
be several multiples of the linear output.

�iii� However, the numerics for the 2�2 lattice indicates
that capacitor saturation decreases the relative amplitude
boost. The upshot is that once the output voltage has satu-
rated the capacitors, increasing the lattice size �and thereby
adding more voltage-dependent capacitors� yields diminish-
ing returns.

�iv� The steady-state analytical calculations from the pre-
vious section indicate that the mechanism behind this ampli-
tude boost is constructive interference of higher harmonics.
That is, if the input consists of ei
t, the output can be ap-
proximated by

�
k=1

N

ckb
keik
t,

for complex coefficients c1 , . . . ,cN. Given the input ampli-
tude A, we solved for the coefficients ck by iterating an equa-

tion of the form M���Ŵ�k�= r̂�k�. In the 1�1 case, this matrix
M��� was a 1�1 matrix:

M��� = − �2 + iK� + 2.

In the 2�2 case, the matrix M��� is given by �26�. For the
20�20 case, as we show later in this paper, the steady-state
solution will again involve iteration of the equation

M���Ŵ�k�= r̂�k�, where the matrix M��� is now 210�210.
We conjecture that the inversion of this much larger matrix

leads to much larger coefficients Ŵ�k�.
We conclude that nonlinear constructive interference can

be used to obtain large output voltages AR, even if this results
in an arbitrarily large ratio AR /A of the output amplitude to

input amplitude. In other words, there is nothing special
about the peak at approximately A�0.60 in Fig. 4�b�—a
voltage-dependent capacitor that saturates at a higher voltage
would allow an even higher ratio of AR /A.

B. Theory

We now generalize the results of Sec. III E, including Al-
gorithm 1, to the case of an N�N lattice. As before, we
assume that the inputs along the left and bottom boundaries
are equal-amplitude and in-phase inputs. This means that the
voltages and currents above the diagonal can be deduced by
symmetry—i.e., by reflection across the diagonal. Taking ad-
vantage of this symmetry, we may consider an equivalent
lattice with only J=N�N+1� /2 voltage unknowns. Note that
we have already used this symmetry in the 2�2 case to pass
from Fig. 9�a� to Fig. 9�b�, which has 2�2+1� /2=3 unknown
voltages.

We present a graph of the symmetry-reduced N=10
inductor-capacitor lattice in Fig. 12. In Fig. 12, edges corre-
spond to inductors, through which we have unknown cur-
rents. Nodes correspond to voltage-dependent capacitors
�connected to ground�, across which we have unknown volt-
ages.

Note that the nodes are numbered left to right, bottom to
top, from 1 to 10�11� /2=55. Nodes 1 through N each have
one edge that connects the node to a prescribed voltage
source, Vin�t�; see Figs. 5 and 9. As in those diagrams, we
treat node 1 as connected to two voltage sources and we treat
the upper-right node J �where, again, J=N�N+1� /2� as con-
nected to a resistor R.

Having numbered the nodes, we can now construct the
J�J matrix M��� that generalizes �26�. We plan to carry out
this construction without writing down Kirchhoff’s laws
throughout the lattice. Instead, we argue as follows. Suppose
we have an infinite square lattice. Labeling the nodes as in
Fig. 2, we obtain Kirchhoff’s laws in the form of system �1�
where i and j can be arbitrary integers.

Differentiating �1a� with respect to t and then using �1b�
and �1c� to eliminate the current variables from the right-
hand side, we find that

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

41 42 43 44 45

46 47 48 49

50 51 52

53 54

55

FIG. 12. Symmetry-reduced 10�10 lattice.
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L
d2

dt2 �Q�Vi,j�� = − 4Vi,j + Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1

= ��2V�ij , �31�

where the right-hand side denotes the discrete Laplacian of V
on the infinite rectangular lattice, evaluated at �i , j�. Let

�p,q = �0, p � q ,

1, p = q .



Let us ignore capacitor saturation and again set C�v�=C0�1
−2bv� and Q�v�=C0�v−bv2�. Then, by analogy with �31�,
we claim that for the lattice diagrammed in Fig. 12, at each
node j, we will have a second-order equation

LC0
d2

dt2 �Vj − bVj
2� = ��2V� j −

� j,J

R

d

dt
VJ + 2� j,1Vin�t�

+ �
k=2

N

� j,kVin�t� . �32�

To complete �32�, we must describe how to compute ��2V� j,
the discrete Laplacian of V on the finite lattice diagrammed
in Fig. 12, evaluated at node j. We make the following three
definitions.

�i� Let � j denote the number of edges that are directly
connected to node j.

�ii� Let � j�k�=1 if node k is precisely one edge away from
node j, and let � j�k�=0 otherwise.

�iii� Let � j =2 if node j is on the diagonal—i.e., if there
exists m such that j=1+mN−m�m−1� /2. Let � j =1 other-
wise.

With these definitions, we may express the discrete La-
placian by

��2V� j = � j�− � jVj + �
k=1

J

� j�k�Vk� . �33�

Substituting �33� into �32�, we have

LC0
d2

dt2 �Vj − bVj
2� = − � j� jVj + � j�

k=1

J

� j�k�Vk −
� j,J

R

d

dt
VJ

+ 2� j,1Vin�t� + �
k=2

N

� j,kVin�t� . �34�

This system of second-order equations, from j=1 to j=J, is
the generalization of �21� to the N�N case. From here on-
wards, we follow the same steps as before. We switch to the
nondimensionalized time 	= t /�LC0 and define K
=�L /C0 /R. We set Vj�t�=Wj�	� and Vin�t�=S�	�. Then �34�
becomes

Wj� + � j,JKWJ� + � j� jWj − � j�
k=1

J

� j�k�Wk

= 2bWjWj� + 2b�Wj��
2 + 2� j,1S�	� + �

k=2

N

� j,kS�	� .

�35�

We expand Wj�	� in a series:

Wj�	� = Wj
�0��	� + bWj

�1��	� + b2Wj
�2��	� + ¯ . �36�

Substituting �36� into �34�, we obtain, at zeroth order in b,

d2

d	2Wj
�0� + � j,JK

d

d	
WJ

�0� + � j� jWj
�0� − � j�

k=1

J

� j�k�Wk
�0�

= 2� j,1S�	� + �
k=2

N

� j,kS�	� . �37�

Define r�0� :R→RJ, a vector-valued function of 	, as follows:

r�0��	� = hS�	� ,

with h= �2,1 , . . . ,1,
N−1

0 , . . . ,0
J−N

�T. As before, we take the Fourier

transform on both sides of �37� with � as the Fourier conju-
gate to �. The result is

M���Ŵ�0� = r̂�0�. �38�

Here W= �W1 , . . . ,WJ�T, Ŵ is the Fourier transform of W,
and M��� is a J�J matrix that may be constructed as fol-
lows.

�i� Start with a J�J zero matrix. For each row j from 1 to
J, proceed column by column. Put −1 in column k if and
only if node k is precisely one edge away from node j—i.e.,
if � j�k�=1. For column j, put � j, the total number of edges
directly connected to node j. The final matrix is symmetric
by construction.

�ii� Take the matrix from the previous step. For each row
j from 1 to J, multiply the row by 2 if node j is a node on the
diagonal—i.e., if � j =2. Otherwise do nothing to row j.

�iii� Subtract �2 from the diagonal.
�iv� Add iK� to the lower-right corner.
�c� Obtaining W�0� for single-frequency forcing. Take

S�	�=A sin 
	, so that

r̂�0� = h� A

2i
��� − 
� −

A

2i
��� + 
�� .

Then by �38� we find that

Ŵ�0� = �M���−1h�� A

2i
��� − 
� −

A

2i
��� + 
�� . �39�

Taking the inverse Fourier transform of both sides gives

W�0��	� = M�
�−1h
A

2i
ei
	 − M�− 
�−1h

A

2i
e−i
	.

Since M�−
�=M�
��, we can rewrite this last equation as
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W�0��	� = Bei
	 + c.c.,

with

B = M�
�−1h
A

2i
.

�d� Algorithm 1, reexamined. Now that we have con-
structed M��� and solved for W�0�, we can reapply almost all
of Algorithm 1 to solve for the successively higher approxi-
mations W�k� for k=1,2 , . . . ,N. The only part of the algo-
rithm that must be changed is the construction of the right-
hand side vector r�k�, i.e., step 1 of Algorithm 1. In the
N�N case, the revised version of step 1 reads as follows.

Step 1’. Substitute W�0� , . . . ,W�k−1� into the right-hand
side of �34� and collect those terms with the coefficient bk.
Call these terms r�k�.

The note following step 1 and all of steps 2, 3, and 4 still
apply. This gives a general algorithm for finding a perturba-
tive approximation to the steady-state response of an N�N
lattice to single-frequency forcing along the left and bottom
boundaries.

�e� Future work. The version of Algorithm 1 for N�N
lattices suggests a concrete problem whose solution would
yield an analytical model of Fig. 4. Namely, one can attempt
to derive estimates on the matrix norm of the J�J matrix
M���, as a function of � and J. These estimates would en-

able one to estimate the size of Ŵ�k� for successively larger
values of k, which could then be used to estimate the steady-
state output amplitude for a large nonlinear lattice. To cor-
rectly solve for large steady-state amplitudes, one must
modify our perturbative calculations to take into account ca-
pacitor saturation. Both of these tasks require extensive
mathematical analysis and are outside the scope of the cur-
rent work.

V. CONCLUSION

A. Relationship to Kadomtsev and Petviashvili

In an N�N lattice, there are N2 unknown voltages and
2N2 unknown currents, for a total of 3N2 degrees of freedom.
Unfortunately, the theory of nonlinear dynamical systems
does not cope well with finite-dimensional systems in RN

with N�10. One way to proceed is to model the finite-
dimensional system by an infinite-dimensional system ob-
tained from a continuum limit.

In prior work �1�, we applied the method of reductive
perturbation theory to �1a�–�1c� and showed that in a weakly
nonlinear continuum limit, lattice voltage is governed by the
negative-dispersion Kadomtsev-Petviashvili �KP� equation:

�Vt + VVx + Vxxx�x + Vyy = 0. �40�

The KP equation has exact soliton solutions, and it is com-
pletely integrable by the inverse scattering method �17�.
Moreover, the KP equation has exact solutions that consist of
two incoming solitons of amplitude A and one outgoing soli-
ton with amplitude at most 4A �18�. In the literature, this
process is sometimes called soliton resonance �19,20�. A re-
cent paper �21� shows how the symmetries of KP may be

utilized to characterize large classes of resonant soliton solu-
tions. For such solutions to exist, n input solitons must col-
lide at precise angles, yielding m output solitons with pre-
determined phase shifts and amplitudes.

While it is interesting that the KP equation has exact so-
lutions that correspond to our notion of nonlinear construc-
tive interference, such solutions do not explain Fig. 4. As
Fig. 4 indicates, by changing the amplitude of the inputs, we
can tune the ratio AR /A. It is not fixed at 4, as it would be for
a corresponding soliton resonance solution of KP. Resonant
solutions of KP consist of colliding solitons, while in our
lattice the waves that collide are formed from harmonic forc-
ing of the boundary. Furthermore, we have carried out nu-
merical experiments that show that nonlinear constructive
interference in LC lattices occurs for a range of collision
angles, not just one precise angle.

We interpret the complete integrability and infinite num-
ber of symmetries of the KP equation as constraints on non-
linear wave collisions. Driving and damping at the boundary
are intrinsic aspects of our problem. If we model a damped,
driven lattice using the same weakly nonlinear limit as in �1�,
we obtain an equation that consists of KP equation �40� plus
extra, symmetry-breaking, nonconservative terms. Our con-
jecture is that breaking the integrability of the KP equation
allows for a much more diverse array of nonlinear collisions.

B. Lattice cutoff frequency

The present work demonstrates that nonlinear construc-
tive interference is possible in two-dimensional, bounded,
nonlinear electrical lattices. Such lattices can be built on chip
and the interference phenomena can be used for a variety of
applications. The applications we have in mind involve input
signals with frequency content that exceeds the cutoff fre-
quency of the fastest active components—e.g., transistors. In
the linear b=0 case, the lattice equations reduce to

Vi,j−1 − 2Vi,j + Vi,j+1 + Vi−1,j − 2Vi,j + Vi+1,j = LC
d2

dt2Vij .

�41�

By considering plane-wave propagation with wave vector
k= �kx ,ky� and frequency f , one finds the dispersion relation

4�2f2 =
2

LC
�2 − �cos kx + cos ky�� . �42�

Clearly the maximum value of f occurs when kx=ky = ��. In
this case,

fM =
1

2�
� 8

LC
. �43�

With state-of-the-art integrated-circuit technologies on a sili-
con substrate, the minimum possible integrated inductance
and capacitance are, approximately, LM =30 pH and CM
=5 fF. Below these values, parasitic inductance and capaci-
tance dominate. Using these values in �43�, we find that the
maximum frequency for plane-wave propagation on a 2D
silicon transmission lattice is fM �1.16 THz. Waves with
frequency that approach this cutoff will occupy a small num-

H. S. BHAT AND E. AFSHARI PHYSICAL REVIEW E 77, 066602 �2008�

066602-12



ber of lattice spacings. The physical wavelength � will be
very small.

Though the preceding analysis is exact only for linear
lattices, it is clear that an analysis of general inductor-
capacitor lattices for frequencies close to the cutoff will in-
volve waves where the A /� ratio is large and the � /h ratio is
small. This is a regime where the asymptotics described ear-
lier, and therefore the KP equation itself, does not apply. This
is another reason why, in our analysis, we worked with the
lattice ordinary differential equations �1a�–�1c� directly,

rather than with the KP equation or with any other con-
tinuum model.
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